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ABSTRACT

We revisit wavelet compression by using a standards-based method
to reduce large-scale data sizes for production scientific computing.
Many of the bottlenecks in visualization and analysis come from
limited bandwidth in data movement, from storage to networks.
The majority of the processing time for visualization and analy-
sis is spent reading or writing large-scale data or moving data from
a remote site in a distance scenario. Using wavelet compression in
JPEG 2000, we provide a mechanism to vary data transfer time ver-
sus data quality, so that a domain expert can improve data transfer
time while quantifying compression effects on their data. By using
a standards-based method, we are able to provide scientists with
the state-of-the-art wavelet compression from the signal processing
and data compression community, suitable for use in a production
computing environment. To quantify compression effects, we fo-
cus on measuring bit rate versus maximum error as a quality metric
to provide precision guarantees for scientific analysis on remotely
compressed POP (Parallel Ocean Program) data.

Index Terms: I.3.8 [Computer Graphics]: Applications E.4
[Data]: Coding and Information Theory—Data compaction and
compression H.3.m [Information Storage and Retrieval]: Miscel-
laneous

1 INTRODUCTION

Large-scale data are a continual problem for scientific visualization
and analysis. While the visualization community has been success-
ful with parallel scaling [18], the main bottlenecks still lie in the
movement of data, over networks and from storage [13, 18, 28], and
in storage capacity. The leadership supercomputers are unbalanced
[47] with respect to compute versus I/O. Furthermore, it is very
expensive to provide high-bandwidth storage in conjunction with
petascale compute-intensive facilities, e.g., Panasas and Lustre par-
allel file systems with many parallel high-bandwidth connections.
While a large capital investment may be able to solve some of the
bandwidth issues between the supercomputer and storage, it does
not address bandwidth considerations for off-site data movement,
distance visualization, and displays [21].

In the past, the scientific visualization community has provided
various data reduction and multi-scale methods for interactive data
resources for bandwidth-limited channels. One particular area of
interest is wavelet decomposition and compression, due to the lo-
calized properties of the compression and the multi-scale nature of
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the method. Wavelets allow a structured data set to be adaptively
scaled, in a focus+context manner, for different target bandwidths
and response times. For production climate visualization and anal-
ysis, we utilize the collective knowledge of the signal processing
and compression community by implementing wavelet compres-
sion and multi-scale visualization using JPEG 2000 technology.
This allows us to reduce storage and network bandwidth require-
ments for large-scale scientific data using a standards-based com-
pression technology leveraging the best practices from the compres-
sion community. We utilize compressed data in a multi-scale analy-
sis framework implemented in a large-scale visualization tool, Par-
aView, to analyze remote POP (Parallel Ocean Program) data sets
compressed with Kakadu, a JPEG 2000 compliant compression li-
brary.

The primary quality metric for compressed data, however, has
been average image difference between compressed and uncom-
pressed rendered data, such as root mean squared error. In con-
trast, our work studies the effects of data value error, rather than
image error, via maximum error or the L∞ norm. By measuring the
maximum error of compressed data, we are able to provide a min-
imum precision guarantee so a domain scientist is assured of the
data precision that a compressed source provides. We argue that
the emphasis for scientific large-data management ought to be fo-
cused on error bounds, such as maximum error rather than average
error, because domain scientists are always wary of the effects on
their results due to visualization transformations.

By providing precise error bounds of data transformations, the
transition from scientific visualization research to domain usage
and practice becomes easier. This is because computational-based
science is completed with quantitative domain-based analytical
tools [12] that rely on data accuracy. Therefore in our opinion, the
quality assessment for data transformation in visualization should
primarily be focused on data-space accuracy and error metrics.
Furthermore, many visualization methods, in particular isosurfac-
ing and thresholding, would be qualitatively and quantitatively im-
proved through precise error constraints on the data [29]. State-
of-the-art standards-based compression, combined with data preci-
sion guarantees in a multi-scale visualization framework, gives us
the tools to visualize and analyze large-scale data in a bandwidth-
limited environment.

In Section 2, we describe the related work in compression,
wavelet compression, and multi-scale visualization. Section 3 de-
scribes our use case and implementation using JPEG 2000 com-
pression. Section 4 describes how we measure precision, visual-
ization of compressed data, and our implementation in multi-scale
ParaView. Our performance results are described in Section 5 and
we conclude with Section 6.

2 RELATED WORK

Data movement, currently and going into exascale, is one of the top
issues for large-scale simulations and analysis [13, 28]. While it is
increasingly apparent that more visualization and analysis must be
done on-site or in situ due to the data movement bottleneck, there
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still are use cases where off-site data analysis and distance visual-
ization requires movement of the data through bandwidth-limited
channels, and data compression can be used in these cases. For ex-
ample when data are curated, shared between collaborators, or the
domain scientist does not wish to spend supercomputing cycles on
analysis, the data often need to be moved off-site. In another exam-
ple, one of the distance visualization use cases outlined by [14, 34]
moves raw data from the remote site for local processing, rather
than images, for higher interactive frame rates. Furthermore, data
compression, as an in situ data reduction method [55], can be use-
ful to reduce simulation I/O time, post-processing time, and storage
space requirements, as long as there are data and error guarantees.
Domain scientists currently truncate their data from double preci-
sion to single precision for post-processing, and compression is an-
other form of truncation, as long as the precision can be described.

Wavelet decomposition [20, 36, 56, 58] and wavelet compres-
sion [25, 26, 30, 42, 50, 54, 52] have been extensively used in the
past for both data reduction and multi-scale visualization. Addition-
ally, the scientific visualization community has devised other non-
wavelet based compression [17, 33], quantization [44], and multi-
scale methods [14, 31, 37] to handle large-scale data sets. In this
work, we leverage the expert knowledge of the signal processing
and data compression communities by using the JPEG 2000 stan-
dard for compression and multi-scale representation of scientific
data, discussed in more detail in Section 2.1.

Error metrics are an important issue when dealing with com-
pressed data [22, 24, 32, 44, 53], and data error has been used
in these instances for controlling multi-scale refinement. Though,
the final quality assessment usually has been evaluated as the av-
erage image difference between rendered compressed and non-
compressed data. Additionally, there has been work in visualization
of uncertainty and error [29, 39, 43, 55], to show the amount of vari-
ance in data, sample data, and ensembles. In our work, we measure
and provide a maximum error guarantee when working with the
compressed data, so that a domain scientist is assured that the data
are accurate to the xth decimal place, where x is order of magnitude
of the maximum error between compressed and non-compressed
data. Thus, our evaluation on compressed data is that we provide a
data quality guarantee for the domain scientist, because we provide
a conservative precision metric up front.

2.1 Related Work in Wavelet Compression

Wavelet transforms have seen a variety of applications to scientific
visualization in recent years, as described in the previous related
work and the numerous references therein. Many of these studies
have used wavelet transforms, usually in the form of their digital in-
carnations, known as multi-rate filter banks, to provide data reduc-
tion and multi-resolution data hierarchies for interactive rendering
of high-resolution pixel or voxel data. While many authors have
also noted the bandwidth crisis associated with the more mundane
tasks of transmitting and storing all of this data, the focus in the sci-
entific visualization literature has been on the difficult problems as-
sociated with interactive visualization of large-scale scientific data
sets.

Some visualization researchers have gone beyond using wavelet
transforms solely as data structures and have obtained significant
bandwidth reductions by employing modern source coding tech-
niques from digital communications theory [45, 40]. For exam-
ple, Guthe et al. [25] and Wang et al. [52] describe schemes in
which small wavelet transform coefficients are zeroed out by hard-
thresholding. The thresholded data is then zero-runlength encoded,
quantized if the wavelet coefficients are floating-point (as with the
SPOT data discussed in [52]), and finally compressed using Huff-
man coding.

While this general approach is capable of providing reasonably
high-quality data reconstruction at reduced bit rates (as measured

in bits transmitted per pixel) for an acceptable computational bur-
den, it suffers from an inherent shortcoming: lack of rate-versus-
distortion scalability. Huffman encoder design produces a variable-
length prefix-free codebook for a given IID (independent and iden-
tically distributed random variables) source that minimizes the ex-
pected number of bits (i.e, the codeword length) per symbol en-
coded, but Huffman coding does not enable partial or progressive
decoding of a compressed bitstream. This means that all symbols
must be decoded completely, at the full precision with which they
were represented at encode-time, implying that the encoder rather
than the end-user gets to decide data fidelity and how much band-
width the end-user must accept. This is particularly limiting in ap-
plications like large-scale scientific data analysis, in which multi-
ple end-users can have widely differing requirements ranging from
low-precision reduced-resolution global browsing to high-fidelity
visualization or floating point exploitation of small fractions of the
data.

In response to these limitations, one goal of our research is
to bridge this gap between the current state of visualization re-
search and the need for standards-based, computationally feasi-
ble, highly scalable scientific source coding methods for produc-
tion scientific computing. Fortunately, highly scalable source cod-
ing methods have evolved over the past few decades that address
at least some of these issues. Transform-based image coding tech-
niques [27, 57] emerged in the 1970’s and 80’s as computer capa-
bilities evolved to the point where PC-scale devices could handle
the computational requirements, leading to the publication of the
ISO/IEC JPEG standard [5, 38] and the FBI Wavelet/Scalar Quan-
tization fingerprint image compression specification [4, 15] in the
early 1990’s. These developments, particularly wavelet transform
and sub-band coding techniques, quantization theory [23], binary
embedded arithmetic bitplane coding, and highly scalable code-
stream architectures [48] led in turn to the latest generation of im-
age source coding technology, the ISO/IEC JPEG 2000 family of
standards [35, 19, 51, 41, 16]. The JPEG 2000 books [49, 11] pro-
vide extensive details about the theory behind JPEG 2000 and the
baseline (Part 1) standard [6].

The main benefit from using a compression standard is that it
leverages the collective knowledge of the compression community
and, through multiple implementations, it is more likely that sup-
port for JPEG 2000 compressed data will exist in the future, which
is important for production-based scientific computing. There exist
several open-source JPEG 2000 implementations, most notably the
JasPer implementation [1, 7], which comprises the ISO reference
implementation of JPEG 2000 Part 1 [6], and the OpenJPEG project
[2]. For our research, however, we chose the commercial Kakadu
implementation [3] because of its extensive support for JPEG 2000
Part 2 extensions [8], the Part 9 interactive client-server protocol
(JPIP) [9], and other features described in Section 3.1. Even though
Kakadu supports Part 9, we did not utilize it in this research and
used standard methods for data transfer of remote compressed data
instead.

3 USE CASE AND IMPLEMENTATION

At Los Alamos National Laboratory (LANL), the climate scien-
tists run daily Parallel Ocean Program (POP) [46] simulations on
Oak Ridge National Laboratory (ORNL) supercomputers. In addi-
tion to using the remote supercomputer for distance visualization
via images and for batch movie generation, there is also a need
to move the data to LANL for local analysis by collaborators and
team members. Due to the large size of the data (1.4 GB per field
per time slice, 3600 × 2400 × 42 single precision floats) and the
low single-link bandwidth between LANL and ORNL (measured
at approximately 1MB/s for a serial link), it takes approximately 23
minutes to copy one field for one time slice.

Considering there are typically four fields that the climate sci-
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Figure 1: The compression-decompression pipeline for our target
use case.

entists are interested in (salinity, temperature, east-west velocity,
north-south velocity), that brings the total up to 5.6 GB per time
slice, and a transfer time of 72 minutes per time slice, over a serial
link. A normal sized set of POP time slices, that can have from tens
to thousands of time steps, brings the total data size up to 56 GB
for ten time steps or 5.6 TB for a thousand time steps. The serial
transfer time in this case would take 12 hours for the former and 50
days for the latter case. At this point, it would be more efficient to
utilize the high-bandwidth, high-latency “station wagon” transfer
(or possibly RFC 1149) to send terabyte hard drives via the mail.

Although parallel file transfers can moderately speed up the
amortized transfer time between ORNL and LANL, we explore the
complementary technique of using compression to reduce the data
sizes and thereby speed up transfer times. Figure 1 describes our
compressed data management pipeline from the remote site to the
local site. Assuming we have raw floating point data generated by
the POP simulation, we perform a series of steps to compress and
decompress the data for transfer from ORNL to LANL.

3.1 Wavelet Compression by JPEG 2000

For our wavelet compression, we used the Kakadu implementation
of the JPEG 2000 image compression, described earlier in Section
2.1. The main benefits of Kakadu are that the software is based on
the JPEG 2000 standard, it is a supported software package suit-
able for production computing, and it is the fastest known imple-
mentation of JPEG 2000 as of this writing. Kakadu also supports
codestream packet-ordering optimization for multiple decoding bit
rates, which in our research was usually chosen to be powers-of-
two ranging from 0.25 to 16 bits/pixel. This means that not only
can the end-user decode the codestream for arbitrary bit rates, mul-
tiple (power-of-two) spatial resolutions, user-selected components,
and user-selected regions of interest, but that the data will be opti-
mal at each of the preset rates, even though all reconstructions are
obtained from the same compressed file (i.e., no need for separate
encodings at each preset bit rate).

We have to apply several preconditioning steps to prepare POP
data for the wavelet compression. Although the Kakadu imple-
mentation supports the JPEG 2000 Part 2 capabilities for three-
dimensional data transformations, in these experiments we treated
three-dimensional data as a stack of 2D slices with no z-axis decor-
relating transforms. The reason is that we focused on 2D slices is
because there is little to no effect on compression rates and data
error when including the z-axis for POP data (the amount of effort
for the relative gain is lost in the noise). Therefore, we individually
compressed z-slices of the POP data as 2D images, by field and
time slice treating each z-slice as a JPEG 2000 image component.

3.1.1 Adjusting Masked Data

A limitation is that JPEG 2000 expects logically rectangular data.
The POP data have masked areas (the landmasses) in the simula-
tion output, as the valid data are only calculated in the ocean areas.

The masked areas in the stored output cause large edge disconti-
nuities between the valid data in the oceans and the masked data
on the land, because the masked area is an arbitrary constant value
(−1034). Since JPEG 2000 compresses the entire 2D area and due
to the value discontinuities at the mask edge, it causes inefficient
wavelet compression at the edges and is a large source of errors
between compressed and non-compressed data.

To correct this, we interpolate the data in the masked areas to re-
duce the discontinuity between the valid data and the masked data.
We smooth the masked areas for more efficient compression by re-
placing the constant value with the value average over the entire
field and time slice, prior to quantization. We have considered us-
ing other interpolations, such as a blurring filter at the edges of the
mask, but they have not been implemented as of this writing. Since
the mask is fixed across time steps, it is assumed that it is transmit-
ted prior to compression, such that both the remote and local side
have access to the mask.

3.1.2 Quantizing Floating Point Data

The capability most lacking in JPEG 2000 from the standpoint of
scientific visualization is support for floating point input. While
floating point support was originally proposed for inclusion in
JPEG 2000 Part 10 [10], there was not sufficient international in-
volvement to complete the development of floating point exten-
sions. Consequently, JPEG 2000 is currently limited to fixed-
precision input and can be as high as 32 bits/pixel. In practice, im-
plementations like Kakadu can handle less input precision, and the
experiments reported below involved pre-quantization of the float-
ing point data (typically to around 25 bits per data point) before
sending it into Kakadu.

This quantization was done using adaptive PCM (pulse code
modulation, also known as uniform scalar quantization) designed
for each input component, a relatively low-complexity preprocess-
ing step. The bin ranges for the quantization are the minimum to
the maximum floating point values for a field and time slice. The
floating point values are normalized and binned to the nearest in-
teger between 0 and N − 1, where N = 2R is the number of bins
and R is the number of bits for quantization. The achieved entropy
after quantization is less than or equal to R. A point to note for
the data ranges in the POP data is that the 25 bit fixed point quan-
tization should be enough to capture most of the dynamic range
with little to no loss in precision (23 bit mantissa for single floating
point precision). We do not quantize with fewer bits and rely on
bit rate variation inherent in JPEG 2000 to reduce data sizes. This
is because in our studies we saw that the resulting data errors were
worse at the same data sizes when using smaller bit quantization
than without.

4 MEASURING PRECISION AND VISUALIZATION OF COM-
PRESSED DATA

Assessing performance from a signal processing and visualization
perspective generally relies on signal-to-noise ratio (SNR), root
mean squared error (RMSE), or the L2 norm, which are all anal-
ogous measures for compression quality. While they are good for
measuring average performance of the compression, it is not con-
servative enough to use as a data quality metric for the scientific
analysis of compressed data. These average metrics can “hide” high
pointwise errors in the compressed data. While the overall average
error may be good and only a few points have high error, those spe-
cific points that can create problems for local analysis because the
error is not bounded nor described to a domain scientist.

For localized scientific analysis, like scientific feature finding, it
is more useful to overspecify and provide the worst case, maximum
pointwise error (L∞ norm), rather than average error (L2 norm).
Unbounded errors, like average error, can have unknown effects on
localized scientific features. By providing an upper bound on the
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Figure 2: POP salinity data with an isoline filter are shown in color.
Paired with it are pointwise errors are shown in black and white, with
log-scale coloring. Compression bit rate decreases, top to bottom:
8, 4, 2, 1, 0.5, and 0.25. It is difficult to see the variation between
the visualizations of the compressed data, while the localized errors
are much more telling. The maximum errors from largest bit rate
to smallest are: 1.49e-09, 5.31e-07, 5.23e-06, 2.31e-05, 8.59e-05,
and 0.000303. The data range from 0.00421 to 0.04209. The worst
relative data error is 0.8% at 0.25 bits per pixel.

Figure 3: POP temperature data with an threshold filter are shown
in color. Paired with it are pointwise errors are shown in black and
white, with log-scale coloring. Compression bit rate decreases, top
to bottom: 8, 4, 2, 1, 0.5, and 0.25. It is difficult to see the variation
between the visualizations of the compressed data, while the local-
ized errors are much more telling. The maximum errors from largest
bit rate to smallest are: 7.63e-06, 2.29e-05, 0.00173, 0.0188, 0.811,
0.293, and 1.54. The data range from -1.99987 to 31.197. The worst
relative data error is 4.6% at 0.25 bits per pixel.
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maximum error, we provide a minimum precision guarantee that the
data are precise to x decimal places, beyond which the scientist can
expect noise with increasing probability in the least significant bits.
In our studies, approximately 20% to 40% of compressed POP data
have error greater than RMSE. Therefore, maximum error acts as
a bounding error epsilon in which the decimal places are uncertain
beyond a fixed precision.

We measure the maximum error by directly comparing each data
point in compressed data with the original data set and recording the
L∞ norm. The minimum precision, can be calculated as the order
of magnitude of the L∞ norm. In Figures 2 and 3, we show POP
salinity data with an isoline filter and POP temperature data with
a thresholding filter, with decreasing bit rate, top to bottom. The
black and white images show the pointwise error with a log-scale
transfer function to contrast against the visualizations, to show that
while the visualizations may seem similar, it may hide localized
data error that can affect scientific analysis. This is one reasons that
domain scientists have been mistrusting or reluctant to adopt scien-
tific visualization methods. With the L∞ metric, a domain scientist
can be assured that compressed data are accurate to a fixed preci-
sion, rather than an average assurance, such as RMSE. In Section
5, we show the relationship of maximum error to RMSE.

4.1 ParaView Multi-Scale Integration

Prior to visualization and analysis, scientific data are compressed
to storage as JPEG 2000 data files (JPEG 2000 bitstream and *.jpx
meta information headers), after the necessary steps to prepare
the data for compression. After compression, the entire dataset
or a spatial sub-region can be requested during decompression in
JPEG 2000, at varying bit rate decomposition levels. Progressive
updating of the decompressed data can be achieved by iteratively
updating from the lowest resolution to the highest, using a stored
buffer of low-resolution data and progressively refining it, via the
JPEG 2000 bitstream storage mechanism.

Thus, JPEG 2000 implements the necessary semantics for multi-
scale visualization of image and volume data. For the visual-
ization and analysis of POP data, we used multi-scale ParaView
as described in [14]. Within ParaView/VTK, we implemented a
Kakadu JPEG 2000 reader module with additional filters specif-
ically for analysis and comparison of compressed data: MSE,
RMSE, SNR, error variance, error mean, maximum error, and rela-
tive maximum error. The JPEG 2000 reader module acts as an in-
terface between the ParaView/VTK multi-scale pipeline semantics
and the JPEG 2000 multi-scale semantics, similar to the VAPOR
[20] reader which can read VAPOR wavelet data within ParaView.

5 PERFORMANCE RESULTS

Our motivating case study and the scientific data we used is from

a 1
10

◦

climate simulation using the Parallel Ocean Program (POP)
[46]. POP simulations generated remotely at ORNL are run in dou-
ble precision, but the results are then truncated and written to disk
in single precision before compressing the data. Future work could
directly incorporate the JPEG 2000 compression in the simulation
I/O routine, rather than using JPEG 2000 as a post-processing oper-
ation, which removes one read and one write of the data, reducing
the end-to-end workflow time [55].

A time step in a POP data set consists of a 3600 × 2400 ×

42 rectilinear grid with four floating point scalar fields (or two
scalar fields and one vector field): salinity (SALT), temperature
(TEMP), east-west flow velocity (UVEL), and north-south flow ve-
locity (VVEL). The data value ranges for each are, respectively:
0.00421 to 0.04209 g of salt/g of water, -1.99987 to 31.197 degrees
Celsius, -159.684 to 230.467 cm/s, and -179.224 to 218.375 cm/s.
The continents are represented as masked values, that are replaced
with the average value for a time step, and represent 37.5% of the

points in the data set in the top slice, going up to 98.9% of the points
in the bottom slice.

We used an “irreversible” (i.e., linear) and “reversible” (i.e., loss-
less but non-linear) 5-tap/3-tap wavelet filter bank from JPEG 2000
Part 1 for compression after 25 bit PCM quantization, storing five
levels of progressive decomposition in the JPEG 2000 bitstream.
The 2D slices of climate data were compressed at various bit rates
after quantization: the maximum bit rate with the 5-3 lossless, the
maximum bit rate with 5-3 lossy and other bit rates of 8, 4, 2, 1,
0.5, and 0.25 with 5-3 lossy.

Figure 4: Root mean squared error (RMSE) versus maximum error,
absolute and relative error. The points represent various compres-
sion rates and the RMSE is measured along with the maximum error
for the data (higher error is found in lower bit rates). In the com-
pressed POP data, there is a nearly linear relationship between the
L2 norm and the L∞ norm. The L∞ is roughly one order of magnitude
greater than the L2 norm.

In our comparisons with POP and JPEG 2000, we primarily mea-
sured (L∞ norm) as it is a better metric to evaluate compressed data,
because it provides a minimum precision error bound for scientific
analysis. To compare against average error, we found that there is
a nearly relationship between root mean squared error (RMSE, L2

norm) and maximum error (L∞ norm), seen in Figure 4. The dif-
ference between L∞ and L2 is roughly one order of magnitude. We
see that the relationship between RMSE and maximum error devi-
ates at lower bit rates, as the maximum error increases faster. The
maximum error at various bit rates can be see in Figure 5, where
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it is more apparent that the maximum error accelerates at lower bit
rates beyond 2.

Figure 5: The relationship between bit rate and maximum data error,
absolute and relative error. The maximum error drop-off can be seen
beginning at around bit rate of 2 in compressed POP data.

Additionally, we look at the compression effects on the maxi-
mum error in the partial derivatives in x of the POP field data, seen
in Figure 6, as the derivatives are an important measure used by
both analysis and visualization. We only show the partial deriva-
tive of x because the graph for y is nearly the same. At lower bit
rates if we compare to Figure 5, we see that there is an interesting
counter trend when compared to the overall data error. At low bit
rates, the maximum error accelerates in the scalar fields, but the
maximum error decelerates in the partial derivatives. This can be
clearly seen in Figure 7, where we compare the maximum error in
the data fields versus the maximum error of the partial derivatives
of the fields. There is nearly a one for one relationship between data
error and derivative error, except at the low bit rates.

Figure 8 shows the graphs that we would provide the scientists
to show the relationship between maximum error and the resulting
transfer time. They allow a domain scientist to trade between data
accuracy and transfer time in a controlled and quantified way, as
they are able to easily see the relationship between maximum er-
ror and the transfer time. The upper-most point in both graphs is
the transfer time for uncompressed POP data, which takes 23 min-
utes to transfer from ORNL to LANL, in our 1MB/s case. Though
the uncompressed data are “infinitely” precise, we put the point at
10−10 to be able to graph it. (In actuality, 10−10 is an over-estimate
for the precision, as machine epsilon for single precision floating
point data is approximately 10−8.) The next point down is the trans-

Figure 6: The relationship between bit rate and maximum error in the
partial derivative of x, absolute and relative error. For brevity, we do
not show the partial derivative in y because it is nearly the same. The
error in the derivatives decelerates at lower bit rates.

fer time for data compressed with the 5-3 lossless filter that reduces
the transfer time to 10 minutes. The points after that are the results
for the 5-3 lossy filter with various bit rates, with increasingly faster
transfer times, but with larger maximum errors.

6 CONCLUSION

We have described the use of JPEG 2000 for the compression of
scientific climate data in a production scientific computing envi-
ronment. With a standards-based data compression technique, we
are able to deliver large-scale data over bandwidth-limited links in
a controlled and quantified manner. The primary metric that we
used is maximum data error (L∞ norm), because it allows us to
provide a precision guarantee for the domain scientist, giving an
exact error bound on the data transformation. By using JPEG 2000,
we leverage the best practices and the state-of-the-art methods pro-
vided by the signal processing and data compression community.
Additionally by using compression standards, it is likely that the
methods will be supported in the future to decompress any archived
climate data for future use. With this work, we are able to control
the size of large-scale data in a quantified, scalable manner for the
bandwidth-limited environments that will prevail into exascale and
for the foreseeable future.
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